5 matching results for "computer vision":
Submitted Apr 16, 2017 (Edited Apr 16, 2017) to Science Research Articles Abstract: Convolutional neural networks have recently demonstrated high-quality reconstruction for single-image super-resolution. In this paper, we propose the Laplacian Pyramid Super-Resolution Network (LapSRN) to progressively reconstruct the sub-band residuals of high-resolution images. At each pyramid level, our model takes coarse-resolution feature maps as input, predicts the high-frequency residuals, and uses transposed convolutions for upsampling to the finer level. Our method does not require the bicubic interpolation as the pre-processing step and thus dramatically reduces the computational complexity. We train the proposed LapSRN with deep supervision using a robust Charbonnier loss function and achieve high-quality reconstruction. Furthermore, our network generates multi-scale predictions in one feed-forward pass through the progressive reconstruction, thereby facilitates resource-aware applications. Extensive quantitative and qualitative evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of speed and accuracy.
|
Submitted Apr 13, 2017 to Scientific Data With nearly one billion online videos viewed everyday, an emerging new frontier in computer vision research is recognition and search in video. While much effort has been devoted to the collection and annotation of large scalable static image datasets containing thousands of image categories, human action datasets lack far behind. Here we introduce HMDB collected from various sources, mostly from movies, and a small proportion from public databases such as the Prelinger archive, YouTube and Google videos. The dataset contains 6849 clips divided into 51 action categories, each containing a minimum of 101 clips.
|
Submitted Apr 12, 2017 to Science Blogs In this post we will take you behind the scenes on how we built a state-of-the-art Optical Character Recognition (OCR) pipeline for our mobile document scanner. We used computer vision and deep learning advances such as bi-directional Long Short Term Memory (LSTMs), Connectionist Temporal Classification (CTC), convolutional neural nets (CNNs), and more. In addition, we will also dive deep into what it took to actually make our OCR pipeline production-ready at Dropbox scale.
|
Submitted Apr 05, 2017 to Scientific Data The UMCD Dataset (about 3.50GB) is composed of two main sets of challenging video sequences acquired at very low-altitude. The first set consists of 30 not geo-referenced sequences that can be used only to evaluate mosaicking algorithms. The second set is made up of 10 pairs of geo-referenced sequences (i.e., 20 videos) in which the first can be used to build the mosaic and the second, acquired on the same path, can be used to test change detection algorithms. The geo-referencing allows developers to reduce drastically the number of matching during the search of entities. The dataset is freely available only for research purposes.
|
Submitted Dec 24, 2016 to Science Courses and Tutorials Computer Vision has become ubiquitous in our society, with applications in search, image understanding, apps, mapping, medicine, drones, and self-driving cars. Core to many of these applications are visual recognition tasks such as image classification, localization and detection. Recent developments in neural network (aka “deep learning”) approaches have greatly advanced the performance of these state-of-the-art visual recognition systems. This course is a deep dive into details of the deep learning architectures with a focus on learning end-to-end models for these tasks, particularly image classification. During the 10-week course, students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in computer vision. The final assignment will involve training a multi-million parameter convolutional neural network and applying it on the largest image classification dataset (ImageNet). We will focus on teaching how to set up the problem of image recognition, the learning algorithms (e.g. backpropagation), practical engineering tricks for training and fine-tuning the networks and guide the students through hands-on assignments and a final course project. Much of the background and materials of this course will be drawn from the ImageNet Challenge.
|
Submit
New Links
Most Popular
Quick Search
Statistics
3,012 listings in 21 categories, with 2,312,329 clicks. Directory last updated Sep 12, 2023.
Welcome Melvintrund, the newest member.